A comparative analysis of family-based and population-based association tests using whole genome sequence data

نویسندگان

  • Jin J Zhou
  • Wai-Ki Yip
  • Michael H Cho
  • Dandi Qiao
  • Merry-Lynn N McDonald
  • Nan M Laird
چکیده

The revolution in next-generation sequencing has made obtaining both common and rare high-quality sequence variants across the entire genome feasible. Because researchers are now faced with the analytical challenges of handling a massive amount of genetic variant information from sequencing studies, numerous methods have been developed to assess the impact of both common and rare variants on disease traits. In this report, whole genome sequencing data from Genetic Analysis Workshop 18 was used to compare the power of several methods, considering both family-based and population-based designs, to detect association with variants in the MAP4 gene region and on chromosome 3 with blood pressure. To prioritize variants across the genome for testing, variants were first functionally assessed using prediction algorithms and expression quantitative trait loci (eQTLs) data. Four set-based tests in the family-based association tests (FBAT) framework--FBAT-v, FBAT-lmm, FBAT-m, and FBAT-l--were used to analyze 20 pedigrees, and 2 variance component tests, sequence kernel association test (SKAT) and genome-wide complex trait analysis (GCTA), were used with 142 unrelated individuals in the sample. Both set-based and variance-component-based tests had high power and an adequate type I error rate. Of the various FBATs, FBAT-l demonstrated superior performance, indicating the potential for it to be used in rare-variant analysis. The updated FBAT package is available at: http://www.hsph.harvard.edu/fbat/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On combining family- and population-based sequencing data

Several statistical group-based approaches have been proposed to detect effects of variation within a gene for each of the population- and family-based designs. However, unified tests to combine gene-phenotype associations obtained from these 2 study designs are not yet well established. In this study, we investigated the efficient combination of population-based and family-based sequencing dat...

متن کامل

Rare variant association test in family-based sequencing studies

The objective of this article is to introduce valid and robust methods for the analysis of rare variants for family-based exome chips, whole-exome sequencing or whole-genome sequencing data. Family-based designs provide unique opportunities to detect genetic variants that complement studies of unrelated individuals. Currently, limited methods and software tools have been developed to assist fam...

متن کامل

Genotypic discrepancies arising from imputation

The ideal genetic analysis of family data would include whole genome sequence on all family members. A strategy of combining sequence data from a subset of key individuals with inexpensive, genome-wide association study (GWAS) chip genotypes on all individuals to infer sequence level genotypes throughout the families has been suggested as a highly accurate alternative. This strategy was followe...

متن کامل

Old lessons learned anew: family-based methods for detecting genes responsible for quantitative and qualitative traits in the Genetic Analysis Workshop 17 mini-exome sequence data

Family-based study designs are again becoming popular as new next-generation sequencing technologies make whole-exome and whole-genome sequencing projects economically and temporally feasible. Here we evaluate the statistical properties of linkage analyses and family-based tests of association for the Genetic Analysis Workshop 17 mini-exome sequence data. Based on our results, the linkage metho...

متن کامل

The Pattern of Linkage Disequilibrium in Livestock Genome

Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014